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ABSTRACT 
Complex systems consisting of multiple agents that interact both with each other as well as 
their environment can often be found in both nature and technical applications. This paper gives 
an overview of important Multi-Agent Reinforcement Learning (MARL) concepts, challenges 
and current research directions. It shortly introduces traditional reinforcement learning and then 
shows how MARL problems can be modelled as stochastic games. Here, the type of problem 
and the system configuration can lead to different algorithms and training goals. Key 
challenges such as the curse of dimensionality, choosing the right learning goal and the 
coordination problem are outlined. Especially, aspects of MARL that have previously been 
considered from a critical point of view are discussed with regards to if and how the current 
research has addressed these criticism or shifted their focus. The wide range of possible MARL 
applications is hinted at by examples from recent research. Further, MARL is assessed from an 
Organic Computing point of view where it takes a central role in the context of self-learning 
and self-adapting systems.  
Keywords: Reinforcement learning, Multi-Agent, Organic Computing, Game Theory. 
INTRODUCTION  

Complex and intelligent systems consisting of multiple interacting agents sharing a 
common environment are finding application in a variety of areas including traffic control [1] 
– [3] and power management [4]. These systems can often be managed more easily in a 
distributed fashion, benefiting from reduced complexity and parallel computation [5], [6]. To 
ensure that such a system delivers the desired performance in a wide range of often 
unpredictable situations it needs to be able to adapt its behaviour. In traditional reinforcement 
learning, a single agent interacts with its environment and changes its policy based on rewards 
it receives for its actions [7]. Compared to this scenario, in a multi-agent setting, the individual 
agents not only adapt and learn from their shared environment but also from the actions and 
learning processes of all the other agents, making multi-agent reinforcement learning (MARL) 
a more complex problem overall. 

This paper aims to give an overview over the complexity of MARL and how the field 
has traditionally been strongly linked to game theory. Furthermore, it addresses a critical 
perspective on some of the game-theoretic notions at the basis of MARL. It then tries to answer 
the research question of how the presented historical criticisms and agendas have been 
addressed by reviewing recent literature and developments in the field. The paper is laid out in 
the following way: An overview of single-agent reinforcement learning is given in Section II 
after which the multi-agent case is described in Section III. The research question is addressed 
in Section IV and a short conclusion is given in Section V. 
II. REINFORCEMENT LEARNING  
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Reinforcement learning can be described as a subset of machine learning that 
distinguishes itself from other areas, like supervised machine learning, by not trying to learn 
from data but rather how an agent can learn to optimise its interaction with an environment in 
order to control it in a beneficial way [7]. A traditional reinforcement learning scenario is 
characterised by a model of the environment, reward and value functions that are assigned to 
specific actions and or environmental states, and the agent’s action policy. The agent observes 
its environment and changes in it (e. g. by analysing sensor data). Based on these observations, 
it perceives the environment to be in a certain state and then proceeds to act according to its 
action policy. These actions in turn again transform the environment - a state transition. The 
agent can further assess its interaction by scalar reward values it receives for a specific state-
action transition. It is essential to point out that, in contrast to supervised learning, the agent 
does not learn about the ”best” action it could have chosen in the state [8]. Depending on the 
scenario, immediate rewards may not always reflect upon the long-term reward an agent will 
receive. Instead, the agent tries to maximise the discounted return over the course of its entire 
interaction. An informal model of a reinforcement learning scenario is visualised in Figure 1. 
Markov Decision Processes  

Formally, single-agent reinforcement learning can be modelled as a Markov Decision 
Process (MDP) [9]. Definition 1: Let X be a finite set of environmental states and U contain 
all actions an agent can take in this environment. Further, a state transition function f: X × U × 
X → [0, 1] defines the probability of the environment transitioning from a specific state xk ∈ 
X to another state xk+1 ∈ X if the agent takes a certain action uk ∈ U. Lastly, a reward function 
ρ : X × U × X → R determines a scalar reward the agent receives immediately after a certain 
state transition. The tuple hX, U, f, ρi is called a Markov Decision Process. 

 
 
Fig 1. In reinforcement learning, an agent perceives his environment through some sort of 
interpretation mechanism. It then performs actions accordingly. In response to its action, the 
environment may change its state and the agent receives a scalar reward. 
How an agent acts in response to a certain environmental state is defined by its policy π: X × 
U → [0, 1]. It is important to note that the Markov Decision Process assumes the environment 
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to be stationary and not influenced by any other adaptive agent [10], restrictions that are 
inherently not fulfilled in the multi-agent case. 
 Q-learning  

One of the most popular algorithms for finding a solution to MDPs is called Q-learning 
[11]. This method relies on finding a strategy that maximises the state-value function Q which 
estimates the expected discounted return of a specific state action pair under a chosen policy π 
over the whole course of the interaction (expressed by the infinite sum over all steps t): 

 Qπ(x, u) = E "X∞ t=0 γ t r t+1|π #                                         (1) 
Here, γ is the discount factor which exponentially decreases rewards the further the 
corresponding state-action pairs are distanced from the initial state and action (x and u). The 
optimal Q function for a specific state action pair can therefore be written as Q∗ (x, u) = 
maxπQπ(x, u). In Q-learning an iterative algorithm based on the Bellman equation is used to 
approximate this function [7]: 

Qi+1(xi , ui) = Qi(xi , ui)+ αi h ri+1 + γ max u0 Qi(xi+1, u0 ) − Qi(xi , ui) i          (2) 
The Q-values for performing a specific action ui in state xi are updated with the 

immediate reward received for this action, ri+1, and the discounted (by multiplication with γ) 
highest Qvalue achievable in the following state xi+1. αi ∈ (0, 1] is the learning rate and is 
often decreased over the course of the algorithm [9]. Q-learning also forms the basis of a range 
of multi-agent reinforcement learning algorithms [12]–[14]. 
Deep Q-Networks  

A modern variation of the algorithm comes in the form of Deep Q-Networks (DQNs) 
[15]. This algorithm combines the advances in training deep neural networks to learn useful 
high level representations of raw input data, e. g. in image classification [16], [17], with 
reinforcement learning. The Q-function is now no longer approximated using a linear function 
but by a deep neural network that introduces nonlinearity. This neural network is fed raw 
sensory data as input from which it learns to derive a higher level representation that is useful 
for estimating the correct Q-values of actions. Using a non-linear function approximator for Q-
learning has previously led to instability which is addressed in the DQN model by the usage of 
experience replay [18] and updating target values of the Q-function only periodically. 
MULTI-AGENT REINFORCEMENT LEARNING 
By extending the framework of reinforcement learning to systems with multiple agents acting 
in shared environment, new challenges, benefits and perspectives arise. This section gives an 
overview over the game-theoretic and algorithmic basics of multi-agent reinforcement learning 
(MARL). 
Markov Games as a model of Multi-Agent Reinforcement Learning 
 Compared to single-agent reinforcement learning, it becomes apparent that MARL is 
intrinsically linked to the field of game theory, the study of multi person decision problems 
[19]. Each agent acting in a shared environment not only has to consider the effects of his own 
actions but is also influenced by the actions of the other agents [9]. From this point of view, 
the Markov Decision Process as a formal model of the single agent reinforcement learning 
problem can be generalised to the so-called stochastic or Markov game with multiple agents 
[9], [20]. 
Definition 2: 
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 Let X be the set of states of a shared environment and U1,...,Un the action sets of n agents 
acting in this environment. State transitions are controlled by a transition function f : X × U × 
X → [0, 1], i. e. they depend on the joint actions U of all agents. Furthermore, each agents 
reward function is defined by ρi : X × U × X → R. The tuple hX, U1, ..., Un, f, ρ1, ..., ρni is 
then called a Markov Game. Like in the Markov Decision Process, each agent has a policy πi 
: X × Ui → [0, 1] but the expected returns of each agent now depend on the joint policy of all 
agents, as the reward functions of the individual agents in turn also depend on the joint actions 
of all agents. 
Here, different kinds of Markov games can be distinguished, depending on how the state of the 
environment is incorporated into the model [9]. In the simplest case, agents play a static game, 
i. e. there is no dynamic environmental state [21]. Such a game can be formally described as a 
tuple hU1... Un, ρ1... ρni. Each agent i again now has a corresponding action set Ui and a 
reward function ρi : U → R which solely depends on the joint action space U : U1 ×U2 × ... × 
Un of all agents, i. e. the state of the environment is disregarded. When there are only two 
agents, these type of stochastic games are also often referred to as matrix games, as the reward 
functions of both agents can be expressed in a matrix, the columns responding to the action of 
the first agent and the rows to those of the second agent [21]. In a stateful environment, a stage 
game can be seen as a static game that is played in this particular fixed state. Lastly, a repeated 
game is simply a stage game that is played more than one time by a specific set of agents. In 
this context, an important criterion for finding a solution is the Nash Equilibrium: This type of 
equilibrium describes a sort of status-quo from which no agent has an incentive to deviate. A 
game state can be seen as a such an equilibrium if each agent’s strategy is a best response to 
the other agents’ strategies [22]. 
Cooperation  

The models, techniques and algorithms applied to multi agent reinforcement learning 
also greatly depend on the degree of cooperation between the individual agents. From this 
perspective, MARL settings can be organised into three categories. In a fully cooperative multi-
agent system all agents aim to achieve the same common goal, maximising a common 
discounted reward. A fully cooperative MARL scenario with a central controller can further be 
modelled as a traditional reinforcement learning problem in the form of a Markov Decision 
Process [9]. In contrast, agents can also act in a competitive environment where their individual 
rewards are negatively impacting the rewards of other agents. A fully competitive setting is 
most often restricted to a case in which two agents have opposing goals, i. e. the reward function 
of one agent is the negative of the other agent’s reward function. From a game theoretic point 
of view, these are therefore commonly referred to as zero-sum games. Finally, MARL 
scenarios that can neither be described as fully cooperative or fully competitive are referred to 
as mixed. In these cases, the returns received by individual agents are not the same but 
correlated to the returns of the other agents in some fashion. 

Mutual Knowledge Another distinction in MARL can be made about the knowledge 
each agent has about the other agents. Claus and Boutilier differentiate two types of learners: 
Independent learners and joint action learners [19]. The former learn independently from one 
another, i. e. each agent only has information about the shared environment and not the actions 
or policies of other agents. This also means, that they learn Q-values for their own actions 
exclusively. Joint Action learners on the other hand, are able to observe all actions taken by 
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any agent and therefore also learn Q-values for every combination of actions of the individual 
agents. 

Learning Goals Specifying a good learning goal for MARL is challenging [9]. In 
general, there are two aspects of learning goals that are deemed desirable in the context of 
multi-agent systems [21]. For one, stability describes the policy of an agent to converge to a 
stationary policy after a certain amount of time. Adaptation on the other hand expresses how 
an agent deals with the changing behaviour of other agents [9]. One of the most common 
stability requirements is convergence e. g. towards a stationary strategy [23], [24] or to a kind 
of equilibrium [4], [25], often the Nash Equilibrium [12], [22] mentioned in Section III-A. 
Convergence to equilibria has been seen as problematic by Shoham et al. [26]. These criticisms 
are reviewed in Section IV-A. The notion of adaptation has been represented in different ways 
e. g. in the concept of rationality [23], [24]. Here, if the other agents converge towards a 
stationary strategy, a rational learning algorithm will converge towards a best-response 
strategy. It is important to note, that both stability and adaptation are needed for an efficient 
MARL algorithm. Furthermore, these two aspects are conflicting with each other, i. e. an 
algorithm cannot be both perfectly stable and perfectly adaptable [9].  
Challenges Compared to Single-Agent Case  

Extending the reinforcement learning framework to the multi-agent case inherently 
comes with some challenges that can either be seen as intensifications of problems found in 
the single agent case or as entirely unique to MARL. 1) Curse of Dimensionality: A problem 
that can also be found with many single-agent reinforcement learning algorithms that rely on 
discrete state and action spaces, the so called Curse of Dimensionality, becomes even more 
pronounced in the multi-agent case. Algorithms that estimate Q values for every state-action 
pair are exponential in complexity with regards to the size of the state and action space. In 
multi-agent settings, action spaces for each agent exist, further exponentially increasing the 
complexity per agent. 
Coordination:  

The problem of coordination between agents can arise in different ways in multi-agent 
reinforcement learning. For one, individual agents are always influenced not only by the shared 
environment but also the actions of other agents. This can lead to situations in which agents 
must decide in a consistent way on which one of multiple equally good joint actions to take in 
order to reach an optimal outcome [9]. In relation to the learning goals of MARL algorithms, 
coordination is also needed in cases where multiple equilibria exist. Here, agents not only have 
to converge towards the same but for the best result also the optimal equilibrium 
Sample MARL Algorithms 
 In the following, two MARL algorithms that aim to extend the single agent Q-learning 
method to the multi-agent case are outlined and put into the context of aspects described above. 
1) Independent Q-learning: The most popular approach for MARL is known as independent 
Q-learning [13]. Here, each agent solves its own single-agent reinforcement problem with Q-
learning in a shared environment. The agents further have no mutual knowledge about each 
other and only receive state and reward signals from the environment, making the 
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Fig. 2. In independent reinforcement learning, such as independent Qlearning, agents disregard 
the presence and actions of other agents in the shared environment and only act on state signals 
and rewards they receive individually.  
Approach distributed and scalable. An independent Q-learning scenario is visualised in Figure 
2. This approach has also been combined with modern Deep Q-Networks [27]. 
Nash Q-learning: Nash Q-learning on the other hand displays a vastly different perspective to 
transfer Q-learning to general sum (as in mixed cooperation and competition) multi-agent 
scenarios: A centralised learning agent updates Q values of the joint actions of all agents based 
on assuming Nash Equilibrium behaviour [12]. In contrast to independent Q-learning, this 
algorithm inherently requires full observability of the environmental state and the actions of 
individual agents, thus making it less scalable to systems with many agents. 
MARL BETWEEN GAME THEORY AND MACHINE LEARNING 
As made clear in the overview given in the previous sections, multi-agent reinforcement 
learning sits at the intersection of game theory and machine learning. In this section, 
problematic aspects of the game-theoretical approach, e. g. the focus on equilibria, are outlined. 
Specifically, criticisms made by Shoham et al. [26] are reviewed and put into the context of 
current research. It is also discussed, how their criticisms and suggestions have been addressed 
by current trends in MARL. 
Problems with Game Theoretical Approach 
In their critical survey published in 2003 [26], Shoham et al. reviewed a sample of multi-agent 
reinforcement learning literature, pointing out problems with what they call the Bellman 
Heritage, i. e. the strong focus on the Bellman equations that are at the core of many popular 
reinforcement learning algorithms, like Q-learning [11]. 
Problems with Equilibria as Training Goals: The authors argue that MARL research at that 
time has focused too heavily on convergence to equilibria which take a central role in game 
theory [22], especially the Nash Equilibrium. In their opinion, this is especially problematic in 
the case when the multi-agent problem cannot be described as fully competitive or fully 
cooperative, but mixed. They point out that this convergence criterion is not only used for 
evaluation but also directly incorporated into popular algorithms at that time, e. g. Nash-Q [12] 
or Correlated Q-learning (CE-Q) [28]. Using equilibria for the execution of the training 
algorithm can be seen as questionable and problematic in several ways using the example of 
Nash-Q: First of all, Nash Equilibria only describe a sort of status-quo when learning should 
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stop, rather than making any prescriptive assumptions prior to that. This is especially the case 
when multiple equilibria exist in a stochastic game, then the need for a kind of oracle driving 
the agents towards the same optimal equilibrium arises. The concept of the Nash Equilibrium 
is also limited to stage games but the importance of convergence to an equilibrium in every 
stage game of an extended stochastic game is also questionable in the authors’ opinion. These 
concerns about the usefulness of equilibria have also been extended and reinforced by research. 
Panait et al. point out, that also in cooperative settings convergence to a Nash Equilibrium 
might be away from team optimal solutions [29]. In their work on incorporating emotional 
behaviour into multi-agent systems dealing with social dilemmas, Yu et al. specifically argue 
that standard MARL convergence towards an equilibrium leads to mutual defection among 
self-interested agents preventing cooperative behaviour [30]. Shoham et al. further make the 
argument that equilibria might not be reached in a reasonable amount of time for complex 
problem spaces [26]. 
Bounded Rationality and Real-World Applicability:  
Another important issue with the game theory centric modelling of MARL systems can be seen 
in how game theory approaches the concept of ”bounded rationality”. Many MARL algorithms 
require exact measurements of the state and also of the other agents’ actions [9] and some go 
further in assuming infinite mutual modelling of the other agents [26]. This view is especially 
inappropriate for applying MARL algorithms to real world applications where the state and 
action spaces are complex and it is not computationally feasible for individual agents to make 
comprehensive observations about their surroundings [15]. 
Shoham et al. also gave their opinions and suggestions on how the field of MARL research 
should continue to progress and outlined directions that they deemed fruitful [26]. In their 
paper, they postulated research agendas ranging from the field of behavioural studies to 
machine learning. First of all, they argue that psychological research should be made into the 
learning behaviours of humans in order to find a well-reasoned model for multi-agent learning 
settings. They further mention distributed control settings in which a central designer gives 
agents in a distributed system adaptive policies as a direction that excludes equilibrium 
analysis. Finally, they describe the so-called AI agenda as the most important one for the field. 
This agenda expresses a wish to move away from game theory and instead focus on approaches 
that are more strongly rooted in machine learning. Here, the question should become how an 
effective agent can be designed given its environment and the other agents. 
Current Directions and Resolutions 
 In the following, a sample of recent literature concerning MARL algorithms and applications 
is reviewed with regards to how it fits into the aforementioned critique and research agendas. 
It should be noted that the samples have been chosen because they represent some aspect of 
the agendas and problems discussed above. 
Inspiration from Human Learning Behaviours for MARL: 
 Two examples of research on how to incorporate human learning behaviours into MARL 
algorithms can be found in the works of Sukhbaatar et al. [31] and Yu et al. [30]. The former 
investigate how effective communication between agents can be learned using back 
propagation. Here, the agents are controlled by deep feed forward networks with an additional 
shared communication channel, represented by a continuous vector. Furthermore, their 
approach also incorporates the concept of ”bounded rationality” as the individual agents can 
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only partially observe their environment. To improve their performance, they learn to transmit 
and evaluate continuous signals about their local environments and actions to each other. They 
test their approach on a set of tasks including a traffic junction simulation and achieve 
significant improvements over baseline models without communication. 
Yu et al. investigate how the emotional dynamics of self interested humans interacting in a 
shared environment can be modelled to improve the performance of MARL methods for social 
dilemmas [30]. In a social dilemma, selfish agents must decide between pursuing strategies to 
increase their individual short-term rewards and choosing actions that will benefit the whole 
group over a larger period of time. An example of a social dilemma occurring in a multi-agent 
system can be found in load balancing and package routing in wireless networks [32]. If no 
altruistic incentives are introduced, standard MARL algorithms will often converge to a Nash 
Equilibrium of mutual defection. The authors argue that this goes against what can be observed 
and has been extensively studied about human interaction in similar settings where altruistic 
behaviour and in turn cooperation naturally emerge. Two appraisal variables are used in 
different ways to derive an emotional state and intrinsic rewards for each agent: social fairness 
and personal well-being. Different prioritisations and combinations of these two variables are 
evaluated and the authors find that for experiments on the classic prisoner’s dilemma task, 
choosing fairness as the core appraisal variable and after that considering individual well-being 
leads to the highest amount of cooperation and overall rewards for all agents. 
Influence of Deep Learning: In recent years, the increase in computational power has enabled 
a shift in machine learning away from the traditional careful handcrafting of algorithms and 
feature representations towards a trend of using deep neural networks fed with raw signals, like 
image, speech and video data to learn representations in a datadriven way [33]. This trend has 
also impacted research in the domain of reinforcement learning and in consequence also 
influenced MARL. Mnih et al. introduced a deep neural network model for end-to-end 
reinforcement learning from raw sensory input data [15], as described in section II-C. Since 
then, research has been made into how this model can be transferred to the multi-agent case 
[34], [35]. Most approaches rely on the most popular MARL algorithm, independent Q-
learning [13] in which each agent learns separately, disregarding the other agents’ presence in 
the environment. In their work, Tampuu et al. [27] combine independent Q-learning with 
DQNs to train a multi-agent system for the game of Pong. They do not focus on convergence 
of the algorithm towards an equilibrium but are interested in how competitive and cooperative 
behaviour emerges when altering the reward functions. In the author’s opinion, the hype in 
deep learning has put a larger emphasis on artificial intelligence in MARL, conforming to the 
AI agenda proposed by Shoham et al. [26]. 
Connection to Organic Computing:  
The field of Organic Computing (OC) is another recent research direction that relates to MARL 
and the dichotomy of game theoretic and machine learning approaches taken in the field. OC 
is concerned with systems of autonomous sub-systems which perceive and interact with their 
environment and each other using sensors and actuators. These systems should be able to 
organise, adapt and improve themselves over the course of their runtime. OC also draws 
heavily from nature as inspiration on how to design such systems [36], [37]. MARL can be 
seen as a central component of the self-adaptation and self learning properties of such systems. 
In contrast to the game theoretic view on MARL, OC also shifts the focus of MARL towards 



MULTI-AGENT REINFORCEMENT LEARNING: FROM ORGANIC COMPUTING TO GAME THEORY 

 169 

stronger imitation of natural/human behaviours. It is also more interested in emergent 
behaviour in multi-agent systems. Bounded rationality is also inherent to OC systems, as 
individual agents often only perceive their immediate environments with sensors. 
 
CONCLUSION 
In this paper, an overview of the problem of multi-agent reinforcement learning has been given. 
It has been outlined how MARL differs from single agent reinforcement learning and also how 
it is more closely related to the field of game theory. A critical perspective on early research in 
the field has also been reviewed and analysed with regards to how it fits into the current sphere 
of MARL. Specifically, the reservations about the former state of MARL research with its 
focus on game theory and equilibrium based methods put forward by Shoham et al. [26] have 
been put into context of recent trends in the field. Examples of incorporating inspiration from 
human behaviour, the rise of deep learning based methods and MARL’s strong connection to 
the field of Organic Computing show ways in which these reservations have been addressed. 
Further research into this subject could include taking a closer look at state-of-the-art MARL 
algorithms or reviewing learning strategies employed in organic computing systems with 
respects to identifying more current paradigms. Overall, multi-agent reinforcement learning is 
more important than ever before in a wide range of research domains and it will be interesting 
to see in which ways the field might evolve in the future. 
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